34842 measured reflections

 $R_{\rm int} = 0.167$

4905 independent reflections

2485 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{µ-2,4-di-*tert*-butyl-6-[3-(1*H*imidazol-1-yl)propyliminomethyl]phenolato}bis[acetatocopper(II)]

Onur Şahin,^a* Orhan Büyükgüngör,^a Mahmut Ulusoy^b and Bekir Çetinkaya^b

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and ^bDepartment of Chemistry, Ege University, TR-35100, Izmir, Turkey Correspondence e-mail: onurs@omu.edu.tr

Received 30 October 2007; accepted 26 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; disorder in main residue; R factor = 0.067; wR factor = 0.128; data-to-parameter ratio = 17.8.

In the centrosymmetric title compound, $[Cu_2(C_{21}H_{30}N_3O)_2(C_2H_3O_2)_2]$, each Cu atom has a distorted tetrahedral coordination geometry defined by N and O atoms in a chelate ring, N of an imidazole ring, and an acetate O atom. The uncoordinated acetate O atom is disordered over two sites with occupancies 0.7:0.3.

Related literature

For related literature, see: Djebbar *et al.* (1997); Hansen *et al.* (1996); Huang *et al.* (2002); Lacroix *et al.* (2004); Tas *et al.* (2004).

Experimental

Crystal data

 $\begin{bmatrix} Cu_2(C_{21}H_{30}N_3O)_2(C_2H_3O_2)_2 \end{bmatrix} & V = 2491.1 \text{ (4) } \text{\AA}^3 \\ M_r = 926.13 & Z = 2 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \text{ radiation} \\ a = 14.1745 \text{ (11) } \text{\AA} & \mu = 0.90 \text{ mm}^{-1} \\ b = 10.2898 \text{ (8) } \text{\AA} & T = 296 \text{ K} \\ c = 19.0850 \text{ (17) } \text{\AA} & 0.25 \times 0.19 \times 0.07 \text{ mm} \\ \beta = 116.502 \text{ (6)}^{\circ} \\ \end{bmatrix}$

Data collection

Stoe IPDSII diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.741, T_{max} = 0.914$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	12 restraints
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.31 \ {\rm e} \ {\rm \AA}^{-3}$
4905 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
275 parameters	

Table 1 Selected bond lengths (Å).

N1-Cu1	1.957 (4)	O1-Cu1	1.910 (3)
N3-Cu1	1.989 (4)	O2-Cu1	1.966 (3)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2164).

References

- Djebbar, S. S., Benali, B. O. & Deloume, J. P. (1997). *Polyhedron*, **16**, 2175–2182.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hansen, K. B., Leighton, J. L. & Jacobsen, E. N. (1996). J. Am. Chem. Soc. 118, 10924–10925.
- Huang, Y., Iwama, T. & Rawal, V. H. (2002). Org. Lett. 4, 1163-1166.
- Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim.
- Acta, **357**, 3825–3835. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany. Tas, E., Aslanoglu, M., Guler, M. & Ulusoy, M. (2004). J. Coord. Chem. 57, 583–589.

Acta Cryst. (2008). E64, m51 [doi:10.1107/S1600536807063283]

Bis{#-2,4-di-*tert*-butyl-6-[3-(1*H*-imidazol-1-yl)propyliminomethyl]phenolato}bis[acetatocopper(II)]

O. Sahin, O. Büyükgüngör, M. Ulusoy and B. Çetinkaya

Comment

Considerable attention has been paid to the chemistry of metal complexes of Schiff bases containing nitrogen and other donors (Djebbar *et al.*, 1997). This may be attributed to their stability, biochemical and analytical uses, and potential applications in fields such as oxidation catalysis, electrochemical and molecular materials with non-linear optical properties, and therapeutic applications (Lacroix *et al.*, 2004). The use of the salen ligand framework in catalytic reactions has been receiving increasing interest due to the aforementioned advantage and its success in many newly discovered processes. Most notable is the asymmetric ring opening of epoxides by a Cr(salen)Cl catalyst which was developed by Jacobsen and co-workers in the mid-1990 s (Hansen *et al.*, 1996). A very important reaction in organic synthesis which involves the use of predominantly chromium-based salen complexes is the Diels-Alder reaction. Indeed, there is a report where these catalysts have been employed as part of a lengthy synthetic strategy to afford complex natural products (Huang *et al.*, 2002). In this study, we report the structural characterization of a dinuclear Cu(II) Schiff base complex, which was previously investigated by different techniques (Tas *et al.*, 2004). We envisaged that the free imidazole group of the proposed structure (I) should interact with aliphatic alkyl halides such as *n*-butyl bromide to give novel copper(II) complexes, leading to ionic liquids. However, all attempts under different and drastic conditions failed. This led us to reconsider the proposed structure (I). Therefore, for detailed information about the coordination mode of the ligands and for full characterization of the complex, a single-crystal X-ray determination has been carried out.

The centrosymmetric molecular structure, with the atomic labelling scheme, is presented in Fig.1. The copper atom is in a distorted tetrahedral coordination geometry defined by atoms N1 and O1 in a chelate ring, N3 of an imidazole ring, and an acetate atom O2. Atoms N1 and O1 are bonded to Cu1 to form a six-membered chelate ring (-C1-C2-C7-N1-Cu1-O1-). The dihedral angle between the phenyl ring and this chelate ring is 6.5 (4)°. The significant difference between Cu-L bond distances [Cu-O1 = 1.910 (3) Å, Cu-O2 = 1.966 (3) Å, Cu-N1 = 1.957 (4)Å and Cu-N3 = 1.989 (4) Å] has also been observed in other copper complexes. The longer Cu1-O3 distance and the larger Cu1-O2-C22 angle suggest there is no bonding interaction between atoms Cu1 and O3.

Experimental

N-[1-(3-Aminopropyl)imidazole]-3,5-di-t-butylsalicylaldimine ligand and its copper(II) complex were synthesized according to the literature procedure (Tas *et al.*, 2004).

Refinement

Atom O3 shows disorder and was modelled in two different positions as O3a and O3b with refined occupancy factors of 0.30 (4) and 0.70 (4). All H-atoms were refined using a riding model with C—H = 0.93Å [$U_{iso}(H) = 1.2U_{eq}(parent atom)$]

for aromatic carbon, C—H = 0.97Å [$U_{iso}(H) = 1.2U_{eq}(\text{parent atom})$] for methylene carbon and C—H = 0.96 Å [$U_{iso}(H)$ = $1.5U_{eq}$ (parent atom)] for methyl carbon atoms.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

map

Bis{µ-2,4-di-tert-butyl-6-[3-(1H-imidazol-1- yl)propyliminomethyl]phenolato}bis[acetatocopper(II)]

Crystal data	
[Cu ₂ (C ₂₁ H ₃₀ N ₃ O) ₂ (C ₂ H ₃ O ₂) ₂]	$F_{000} = 980$
$M_r = 926.13$	$D_{\rm x} = 1.235 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P2ybc	Cell parameters from 29181 reflections
<i>a</i> = 14.1745 (11) Å	$\theta = 1.6 - 27.9^{\circ}$
b = 10.2898 (8) Å	$\mu = 0.90 \text{ mm}^{-1}$
c = 19.0850 (17) Å	T = 296 K
$\beta = 116.502 \ (6)^{\circ}$	Prism, black
$V = 2491.1 (4) \text{ Å}^3$	$0.25\times0.19\times0.07~mm$
Z = 2	

Data collection

STOE IPDSII diffractometer	4905 independent reflections
Radiation source: fine-focus sealed tube	2485 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.167$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}$
T = 296 K	$\theta_{\min} = 2.2^{\circ}$
rotation method scans	$h = -17 \rightarrow 17$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$k = -12 \rightarrow 12$
$T_{\min} = 0.741, T_{\max} = 0.914$	<i>l</i> = −23→23
34842 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier ma
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.067$	H-atom parameters constrained

$w P(E^2) = 0.128$	$w = 1/[\sigma^2(F_0^2) + (0.0447P)^2]$
$WR(I^{*}) = 0.128$	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{max} < 0.001$
4905 reflections	$\Delta \rho_{max} = 0.31 \text{ e } \text{\AA}^{-3}$
275 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
12 restraints	Extinction correction: none
Determine the first sector of a termine the sector of the	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.6847 (4)	0.6496 (5)	0.4074 (3)	0.0479 (12)	
C2	0.6890 (4)	0.5548 (4)	0.3558 (3)	0.0478 (12)	
C3	0.7777 (4)	0.5428 (5)	0.3420 (3)	0.0573 (14)	
Н3	0.7789	0.4768	0.3092	0.069*	
C4	0.8623 (4)	0.6239 (5)	0.3749 (3)	0.0570 (14)	
C5	0.8573 (4)	0.7181 (6)	0.4260 (3)	0.0635 (15)	
Н5	0.9142	0.7745	0.4491	0.076*	
C6	0.7738 (4)	0.7346 (5)	0.4451 (3)	0.0531 (13)	
C7	0.6028 (4)	0.4685 (5)	0.3117 (3)	0.0556 (13)	
H7	0.6150	0.4070	0.2810	0.067*	
C8	0.9600 (5)	0.6182 (6)	0.3599 (4)	0.0752 (17)	
C9	0.9519 (6)	0.5078 (8)	0.3043 (6)	0.141 (4)	
H9A	0.9468	0.4264	0.3269	0.169*	
H9B	1.0136	0.5074	0.2955	0.169*	
Н9С	0.8904	0.5200	0.2554	0.169*	
C10	0.9705 (7)	0.7427 (8)	0.3223 (5)	0.131 (3)	
H10A	1.0295	0.7362	0.3105	0.157*	
H10B	0.9814	0.8139	0.3576	0.157*	
H10C	0.9073	0.7573	0.2748	0.157*	
C11	1.0571 (5)	0.5926 (11)	0.4350 (5)	0.156 (4)	
H11A	1.0500	0.5106	0.4563	0.187*	
H11B	1.0656	0.6605	0.4719	0.187*	
H11C	1.1177	0.5902	0.4250	0.187*	
C12	0.7780 (4)	0.8338 (6)	0.5050 (3)	0.0671 (15)	

C13	0.8787 (5)	0.9195 (8)	0.5362 (4)	0.113 (3)	
H13A	0.8786	0.9778	0.5754	0.136*	
H13B	0.8796	0.9687	0.4938	0.136*	
H13C	0.9400	0.8650	0.5586	0.136*	
C14	0.6846 (5)	0.9279 (6)	0.4704 (3)	0.0811 (17)	
H14A	0.6199	0.8802	0.4537	0.097*	
H14B	0.6853	0.9722	0.4264	0.097*	
H14C	0.6900	0.9903	0.5094	0.097*	
C15	0.7796 (5)	0.7619 (7)	0.5764 (3)	0.0817 (18)	
H15A	0.7156	0.7132	0.5605	0.098*	
H15B	0.7854	0.8240	0.6157	0.098*	
H15C	0.8388	0.7039	0.5974	0.098*	
C16	0.4370 (4)	0.3671 (5)	0.2586 (3)	0.0649 (16)	
H16A	0.4696	0.3215	0.2306	0.078*	
H16B	0.3740	0.4095	0.2203	0.078*	
C17	0.4064 (5)	0.2697 (6)	0.3046 (3)	0.0698 (17)	
H17A	0.3537	0.2114	0.2679	0.084*	
H17B	0.3742	0.3162	0.3326	0.084*	
C18	0.5027 (5)	0.8115 (6)	0.6368 (4)	0.0771 (18)	
H18A	0.4521	0.8271	0.6571	0.092*	
H18B	0.5294	0.8949	0.6300	0.092*	
C19	0.4943 (4)	0.7166 (5)	0.5142 (3)	0.0657 (15)	
H19	0.5638	0.7362	0.5260	0.079*	
C20	0.3381 (4)	0.6471 (6)	0.4573 (3)	0.0665 (15)	
H20	0.2764	0.6086	0.4207	0.080*	
C21	0.3507 (5)	0.7013 (6)	0.5248 (4)	0.0705 (16)	
H21	0.3002	0.7066	0.5433	0.085*	
C22	0.2820 (5)	0.6256 (6)	0.2458 (4)	0.0721 (17)	
C23	0.1666 (5)	0.6146 (8)	0.1897 (4)	0.122 (3)	
H23A	0.1251	0.6322	0.2169	0.146*	
H23B	0.1518	0.5283	0.1683	0.146*	
H23C	0.1493	0.6763	0.1480	0.146*	
N1	0.5106 (3)	0.4662 (4)	0.3098 (2)	0.0543 (11)	
N2	0.4498 (4)	0.7462 (4)	0.5607 (3)	0.0620 (12)	
N3	0.4297 (3)	0.6572 (4)	0.4504 (2)	0.0596 (11)	
O1	0.6027 (2)	0.6631 (3)	0.42159 (19)	0.0557 (9)	
O2	0.3149 (3)	0.5524 (4)	0.3042 (2)	0.0705 (11)	
O3A	0.327 (3)	0.721 (4)	0.253 (2)	0.105 (5)	0.30 (4)
O3B	0.3390 (11)	0.6916 (16)	0.2238 (13)	0.105 (5)	0.70 (4)
Cu1	0.46586 (5)	0.58707 (6)	0.36829 (4)	0.0531 (2)	
Atomic diant-	a and and a gran atom 18	2)			
Atomic displac	cement parameters (A)			
			10	10	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.035 (3)	0.061 (3)	0.044 (3)	0.006 (2)	0.014 (2)	0.010 (2)
C2	0.041 (3)	0.054 (3)	0.051 (3)	0.006 (2)	0.022 (2)	0.006 (2)
C3	0.056 (3)	0.065 (4)	0.060 (3)	0.020 (3)	0.033 (3)	0.019 (3)
C4	0.040 (3)	0.064 (4)	0.069 (3)	0.011 (2)	0.026 (3)	0.020 (3)

C5	0.035 (3)	0.081 (4)	0.068 (4)	-0.001 (3)	0.018 (3)	0.014 (3)
C6	0.037 (3)	0.064 (3)	0.052 (3)	0.001 (2)	0.014 (2)	0.007 (3)
C7	0.058 (3)	0.066 (4)	0.046 (3)	0.005 (3)	0.026 (3)	0.001 (2)
C8	0.056 (3)	0.093 (5)	0.092 (4)	0.007 (3)	0.047 (3)	0.020 (4)
С9	0.119 (7)	0.128 (7)	0.242 (11)	0.001 (5)	0.141 (8)	-0.009 (8)
C10	0.145 (7)	0.129 (7)	0.175 (8)	-0.003 (6)	0.121 (7)	0.028 (6)
C11	0.059 (4)	0.294 (13)	0.134 (6)	0.047 (7)	0.061 (5)	0.069 (8)
C12	0.052 (3)	0.077 (4)	0.067 (4)	-0.010 (3)	0.022 (3)	-0.005 (3)
C13	0.090 (5)	0.139 (7)	0.117 (5)	-0.054 (5)	0.052 (4)	-0.053 (5)
C14	0.089 (4)	0.066 (4)	0.087 (4)	-0.005 (4)	0.037 (4)	-0.014 (3)
C15	0.065 (4)	0.113 (5)	0.052 (3)	0.014 (4)	0.014 (3)	-0.002 (3)
C16	0.063 (4)	0.077 (4)	0.055 (3)	-0.008 (3)	0.026 (3)	-0.023 (3)
C17	0.071 (4)	0.075 (4)	0.073 (4)	-0.029 (3)	0.040 (3)	-0.039 (3)
C18	0.100 (5)	0.061 (4)	0.089 (4)	0.000 (3)	0.059 (4)	-0.024 (3)
C19	0.053 (3)	0.085 (4)	0.070 (4)	-0.011 (3)	0.036 (3)	-0.020 (3)
C20	0.046 (3)	0.085 (4)	0.072 (4)	-0.007 (3)	0.029 (3)	-0.006 (3)
C21	0.063 (4)	0.086 (4)	0.081 (4)	-0.002 (3)	0.049 (3)	-0.012 (3)
C22	0.054 (4)	0.067 (5)	0.092 (5)	0.001 (3)	0.029 (4)	0.002 (4)
C23	0.063 (4)	0.150 (8)	0.110 (5)	-0.001 (5)	0.001 (4)	0.012 (5)
N1	0.046 (2)	0.069 (3)	0.047 (2)	-0.002 (2)	0.020 (2)	-0.003 (2)
N2	0.063 (3)	0.064 (3)	0.070 (3)	-0.002 (2)	0.039 (3)	-0.014 (2)
N3	0.044 (3)	0.078 (3)	0.062 (3)	-0.002 (2)	0.028 (2)	-0.012 (2)
01	0.0381 (19)	0.073 (2)	0.058 (2)	-0.0021 (16)	0.0235 (17)	-0.0077 (17)
O2	0.048 (2)	0.096 (3)	0.068 (2)	-0.004 (2)	0.0253 (19)	-0.007 (2)
O3A	0.079 (5)	0.092 (7)	0.162 (12)	0.008 (4)	0.070 (6)	0.041 (7)
O3B	0.079 (5)	0.092 (7)	0.162 (12)	0.008 (4)	0.070 (6)	0.041 (7)
Cul	0.0392 (3)	0.0685 (4)	0.0521 (3)	-0.0025 (4)	0.0207 (2)	-0.0072 (4)

Geometric parameters (Å, °)

C1—O1	1.313 (5)	C14—H14C	0.960
C1—C2	1.407 (6)	C15—H15A	0.960
C1—C6	1.439 (7)	C15—H15B	0.960
C2—C3	1.399 (6)	C15—H15C	0.960
C2—C7	1.440 (7)	C16—N1	1.474 (6)
C3—C4	1.363 (7)	C16—C17	1.517 (7)
С3—Н3	0.930	C16—H16A	0.970
C4—C5	1.400 (7)	C16—H16B	0.970
C4—C8	1.535 (7)	C17—C18 ⁱ	1.524 (8)
C5—C6	1.395 (7)	С17—Н17А	0.970
С5—Н5	0.930	С17—Н17В	0.970
C6—C12	1.514 (7)	C18—N2	1.467 (7)
C7—N1	1.291 (6)	C18—C17 ⁱ	1.524 (8)
С7—Н7	0.930	C18—H18A	0.970
C8—C11	1.503 (9)	C18—H18B	0.970
C8—C10	1.508 (9)	C19—N3	1.304 (6)
C8—C9	1.524 (10)	C19—N2	1.331 (6)
С9—Н9А	0.960	С19—Н19	0.930
С9—Н9В	0.960	C20—C21	1.341 (7)

С9—Н9С	0.960	C20—N3	1.366 (6)
C10—H10A	0.960	С20—Н20	0.930
C10—H10B	0.960	C21—N2	1.341 (7)
C10—H10C	0.960	C21—H21	0.930
C11—H11A	0.960	C22—O3A	1.14 (4)
C11—H11B	0.960	C22—O2	1.249 (7)
C11—H11C	0.960	С22—ОЗВ	1.263 (18)
C12—C14	1.532 (8)	C22—C23	1.509 (8)
C12—C15	1.541 (8)	C23—H23A	0.960
C12—C13	1.552 (8)	С23—Н23В	0.960
С13—Н13А	0.960	С23—Н23С	0.960
C13—H13B	0.960	N1—Cu1	1.957 (4)
С13—Н13С	0.960	N3—Cu1	1.989 (4)
C14—H14A	0.960	O1—Cu1	1.910 (3)
C14—H14B	0.960	O2—Cu1	1.966 (3)
O1—C1—C2	122.5 (4)	H14B—C14—H14C	109.5
O1—C1—C6	119.5 (4)	С12—С15—Н15А	109.5
C2—C1—C6	118.0 (4)	C12—C15—H15B	109.5
C3—C2—C1	121.1 (5)	H15A—C15—H15B	109.5
C3—C2—C7	115.8 (5)	C12-C15-H15C	109.5
C1—C2—C7	123.1 (4)	H15A—C15—H15C	109.5
C4—C3—C2	122.7 (5)	H15B-C15-H15C	109.5
С4—С3—Н3	118.7	N1—C16—C17	112.0 (4)
С2—С3—Н3	118.7	N1-C16-H16A	109.2
C3—C4—C5	115.9 (5)	С17—С16—Н16А	109.2
C3—C4—C8	125.0 (5)	N1-C16-H16B	109.2
C5—C4—C8	119.2 (5)	C17—C16—H16B	109.2
C6—C5—C4	125.4 (5)	H16A—C16—H16B	107.9
С6—С5—Н5	117.3	C16—C17—C18 ⁱ	114.9 (5)
С4—С5—Н5	117.3	С16—С17—Н17А	108.5
C5—C6—C1	116.9 (5)	C18 ⁱ —C17—H17A	108.5
C5—C6—C12	121.8 (5)	С16—С17—Н17В	108.5
C1—C6—C12	121.2 (4)	C18 ⁱ —C17—H17B	108.5
N1—C7—C2	127.8 (5)	H17A—C17—H17B	107.5
N1—C7—H7	116.1	N2—C18—C17 ⁱ	111.5 (4)
С2—С7—Н7	116.1	N2—C18—H18A	109.3
C11—C8—C10	111.1 (7)	C17 ⁱ —C18—H18A	109.3
C11—C8—C9	106.6 (6)	N2—C18—H18B	109.3
C10—C8—C9	107.1 (6)	C17 ⁱ —C18—H18B	109.3
C11—C8—C4	110.3 (5)	H18A—C18—H18B	108.0
C10—C8—C4	110.2 (5)	N3—C19—N2	112.7 (5)
C9—C8—C4	111.4 (5)	N3—C19—H19	123.7
С8—С9—Н9А	109.5	N2—C19—H19	123.7
С8—С9—Н9В	109.5	C21—C20—N3	109.7 (5)
Н9А—С9—Н9В	109.5	С21—С20—Н20	125.2
С8—С9—Н9С	109.5	N3—C20—H20	125.2
Н9А—С9—Н9С	109.5	C20—C21—N2	107.1 (5)

Н9В—С9—Н9С	109.5	C20—C21—H21	126.5
C8—C10—H10A	109.5	N2—C21—H21	126.5
C8—C10—H10B	109.5	O3A—C22—O2	116 (2)
H10A—C10—H10B	109.5	O2—C22—O3B	125.6 (8)
C8—C10—H10C	109.5	O3A—C22—C23	121.2 (19)
H10A-C10-H10C	109.5	O2—C22—C23	116.3 (6)
H10B-C10-H10C	109.5	O3B—C22—C23	117.1 (9)
C8—C11—H11A	109.5	С22—С23—Н23А	109.5
C8—C11—H11B	109.5	С22—С23—Н23В	109.5
H11A—C11—H11B	109.5	H23A—C23—H23B	109.5
C8—C11—H11C	109.5	С22—С23—Н23С	109.5
H11A—C11—H11C	109.5	H23A—C23—H23C	109.5
H11B—C11—H11C	109.5	H23B—C23—H23C	109.5
C6—C12—C14	111.4 (4)	C7—N1—C16	116.1 (4)
C6—C12—C15	108.9 (5)	C7—N1—Cu1	123.6 (3)
C14—C12—C15	110.7 (5)	C16—N1—Cu1	120.2 (3)
C6—C12—C13	113.1 (5)	C19—N2—C21	106.3 (5)
C14—C12—C13	106.0 (5)	C19—N2—C18	125.4 (5)
C15—C12—C13	106.6 (5)	C21—N2—C18	128.3 (5)
C12—C13—H13A	109.5	C19—N3—C20	104.3 (4)
C12—C13—H13B	109.5	C19—N3—Cu1	125.8 (4)
H13A—C13—H13B	109.5	C20—N3—Cu1	129.7 (4)
С12—С13—Н13С	109.5	C1—O1—Cu1	128.9 (3)
H13A—C13—H13C	109.5	C22—O2—Cu1	108.4 (4)
H13B—C13—H13C	109.5	O1—Cu1—N1	93.07 (15)
C12—C14—H14A	109.5	O1—Cu1—O2	165.98 (17)
C12—C14—H14B	109.5	N1—Cu1—O2	93.98 (16)
H14A—C14—H14B	109.5	O1—Cu1—N3	89.40 (16)
C12—C14—H14C	109.5	N1—Cu1—N3	160.63 (17)
H14A—C14—H14C	109.5	O2—Cu1—N3	87.95 (16)
O1—C1—C2—C3	-179.9 (4)	C17—C16—N1—Cu1	-64.3 (5)
C6—C1—C2—C3	0.5 (6)	N3—C19—N2—C21	0.8 (7)
O1—C1—C2—C7	2.7 (7)	N3—C19—N2—C18	179.1 (5)
C6—C1—C2—C7	-176.9 (4)	C20-C21-N2-C19	-0.7 (7)
C1—C2—C3—C4	-2.5 (7)	C20-C21-N2-C18	-178.9 (5)
C7—C2—C3—C4	175.1 (4)	C17 ⁱ —C18—N2—C19	-62.9 (7)
C2—C3—C4—C5	2.3 (7)	C17 ⁱ —C18—N2—C21	115.0 (6)
C2—C3—C4—C8	-177.9 (5)	N2—C19—N3—C20	-0.7 (6)
C3—C4—C5—C6	-0.1 (7)	N2—C19—N3—Cu1	-176.3 (4)
C8—C4—C5—C6	-179.9 (5)	C21—C20—N3—C19	0.2 (6)
C4—C5—C6—C1	-1.8 (7)	C21—C20—N3—Cu1	175.6 (4)
C4—C5—C6—C12	176.1 (5)	C2—C1—O1—Cu1	-11.4 (6)
O1—C1—C6—C5	-178.2 (4)	C6—C1—O1—Cu1	168.3 (3)
C2—C1—C6—C5	1.5 (6)	O3A—C22—O2—Cu1	-26 (2)
O1—C1—C6—C12	4.0 (7)	O3B—C22—O2—Cu1	12.5 (16)
C2-C1-C6-C12	-176.4 (4)	C23—C22—O2—Cu1	-179.2 (5)
C3—C2—C7—N1	-174.9 (5)	C1—O1—Cu1—N1	11.6 (4)
C1—C2—C7—N1	2.6 (8)	C1—O1—Cu1—O2	-108.6 (7)

C3—C4—C8—C11	-119.3 (7)	C1—O1—Cu1—N3	172.3 (4)
C5—C4—C8—C11	60.5 (7)	C7—N1—Cu1—O1	-6.0 (4)
C3—C4—C8—C10	117.7 (6)	C16—N1—Cu1—O1	175.3 (4)
C5-C4-C8-C10	-62.5 (7)	C7—N1—Cu1—O2	161.9 (4)
C3—C4—C8—C9	-1.1 (8)	C16—N1—Cu1—O2	-16.9 (4)
C5—C4—C8—C9	178.7 (6)	C7—N1—Cu1—N3	-103.0 (6)
C5-C6-C12-C14	123.9 (5)	C16—N1—Cu1—N3	78.3 (6)
C1—C6—C12—C14	-58.3 (7)	C22—O2—Cu1—O1	33.7 (8)
C5-C6-C12-C15	-113.7 (5)	C22—O2—Cu1—N1	-86.3 (4)
C1—C6—C12—C15	64.1 (6)	C22—O2—Cu1—N3	113.0 (4)
C5—C6—C12—C13	4.6 (8)	C19—N3—Cu1—O1	-6.0 (5)
C1—C6—C12—C13	-177.6 (5)	C20—N3—Cu1—O1	179.6 (5)
N1—C16—C17—C18 ⁱ	-63.0 (6)	C19—N3—Cu1—N1	91.6 (7)
N3—C20—C21—N2	0.3 (7)	C20—N3—Cu1—N1	-82.9 (7)
C2—C7—N1—C16	179.6 (5)	C19—N3—Cu1—O2	-172.2 (5)
C2—C7—N1—Cu1	0.8 (7)	C20—N3—Cu1—O2	13.3 (5)
C17—C16—N1—C7	116.9 (5)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1